In silico Analysis of Conformational Changes Induced by Mutation of Aromatic Binding Residues: Consequences for Drug Binding in the hERG K+ Channel
نویسندگان
چکیده
Pharmacological inhibition of cardiac hERG K(+) channels is associated with increased risk of lethal arrhythmias. Many drugs reduce hERG current by directly binding to the channel, thereby blocking ion conduction. Mutation of two aromatic residues (F656 and Y652) substantially decreases the potency of numerous structurally diverse compounds. Nevertheless, some drugs are only weakly affected by mutation Y652A. In this study we utilize molecular dynamics simulations and docking studies to analyze the different effects of mutation Y652A on a selected number of hERG blockers. MD simulations reveal conformational changes in the binding site induced by mutation Y652A. Loss of π-π-stacking between the two aromatic residues induces a conformational change of the F656 side chain from a cavity facing to cavity lining orientation. Docking studies and MD simulations qualitatively reproduce the diverse experimentally observed modulatory effects of mutation Y652A and provide a new structural interpretation for the sensitivity differences.
منابع مشابه
Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking
The antiarrhythmic drug amiodarone delays cardiac repolarisation through inhibition of hERG-encoded potassium channels responsible for the rapid delayed rectifier potassium current (IKr). This study aimed to elucidate molecular determinants of amiodarone binding to the hERG channel. Whole-cell patch-clamp recordings were made at 37°C of ionic current (IhERG) carried by wild-type (WT) or mutant ...
متن کاملComputational insights into fluconazole resistance by the suspected mutations in lanosterol 14α-demethylase (Erg11p) of Candida albicans
Mutations in the ergosterol biosynthesis gene 11 (ERG11) of Candida albicans have been frequently reported in fluconazole-resistant clinical isolates. Exploring the mutations and their effect could provide new insights into the underlying mechanism of fluconazole resistance. Erg11p_Threonine285Alanine (Erg11p_THR285ALA), Erg11p_Leucine321Phenylalanine (Erg11p_LEU321PHE) and Erg11p_Serine457Pro...
متن کاملPosition of aromatic residues in the S6 domain, not inactivation, dictates cisapride sensitivity of HERG and eag potassium channels.
Unintended block of HERG K+ channels is a side effect of many common medications and is the most common cause of acquired long QT syndrome associated with increased risk of life-threatening arrhythmias. The molecular mechanism of high-affinity HERG block by structurally diverse compounds has been attributed to pi-stacking and cation-pi interactions of a drug (e.g., cisapride) with specific arom...
متن کاملThe low-potency, voltage-dependent HERG blocker propafenone--molecular determinants and drug trapping.
The molecular determinants of high-affinity human ether-a-go-go-related gene (HERG) potassium channel blockade by methanesulfonanilides include two aromatic residues (Phe656 and Tyr652) on the inner helices (S6) and residues on the pore helices that face into the inner cavity, but determinants for lower-affinity HERG blockers may be different. In this study, alanine-substituted HERG channel mut...
متن کاملInvestigating Dynamic Properties of Residues of Warfarin-Azapropazone Binding Site in Human Serum Albumin
Introduction: Human Serum Albumin (HSA) is one of the most important proteins in blood that can bind a wide range of components and different drugs such as Warfarin and is also circulated in the body by HSA. Therefore, studying HSA is very significant in pharmacology. In this research, dynamic behavior of residues of Warfain binding site of HSA has been investigated. Methods: Firstly, PDB form...
متن کامل